A Novel Approach to Process Modeling for Instrument Surveillance and Calibration Verification

نویسندگان

  • Brandon Rasmussen
  • Robert E. Uhrig
چکیده

This work presents an empirical modeling approach combining a bilinear modeling technique, Partial Least Squares, with the universal function approximation abilities of single hidden layer non-linear artificial neural networks. This approach, referred to as Neural Network Partial Least Squares, is compared to the common Autoassociative Artificial Neural Network. The Neural Network Partial Least Squares model has been embedded into a graphical user interface and implemented at the Electrical Power Research Institute's Instrumentation and Control Center located at Tennessee Valley Authority's Kingston fossil power plant. Results are presented for 51 process signals with an average absolute estimation error of ~1.7% of the mean value, and sample drift detection performances are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Partial Least Squares Modeling for Instrument Surveillance and Calibration Verification

An Instrument Surveillance and Calibration Verification (ISCV) system primarily consists of a process model, which is used to verify the output of the measurement instruments in that process. Artificial Neural Networks (ANNs) and Partial Least Squares (PLS) are two methods, which can be used for model development. The linear transformation of the PLS method provides a supervised reduction of th...

متن کامل

Online Implementation of Instrument Surveillance and Calibration Verification Using Autoassociative Neural Networks

An autoassociative artificial neural network (AANN) instrument channel monitoring technique has been developed for sensor and associated instrument channel online calibration verification. Several AANN models, each modeling a group of interrelated signals, are utilized to provide plant-wide real-time estimation of true process values. This method utilizes a genetic algorithm search approach sup...

متن کامل

Automatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models

Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...

متن کامل

Using design of experiments approach and simulated annealing algorithm for modeling and Optimization of EDM process parameters

The main objectives of this research are, therefore, to assess the effects of process parameters and to determine their optimal levels machining of Inconel 718 super alloy. gap voltage, current, time of machining and duty factor are tuning parameters considered to be study as process input parameters. Furthermore, two important process output characteristic, have been evaluated in this research...

متن کامل

A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model

The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000